Synthesis, Molecular Docking, and Preliminary Evaluation of 2-(1,2,3-Triazoyl)benzaldehydes As Multifunctional Agents for the Treatment of Alzheimer's Disease

CHEMMEDCHEM(2020)

引用 12|浏览14
暂无评分
摘要
We described here our results on the use of thiourea as a ligand in the copper catalysed azide-alkyne cycloaddition (CuAAC) of 2-azidobenzaldehyde with alkynes. Reactions were performed reacting 2-azidobenzaldehyde with a range of terminal alkynes using 10 mol % of copper iodide as a catalyst, 20 mol % of thiourea as a ligand, triethylamine as base, DMSO as solvent at 100 degrees C under nitrogen atmosphere. The corresponding 2-(1H-1,2,3-triazoyl)-benzaldehydes (2-TBH) were obtained in moderated to excellent yields and according our experiments, the use of thiourea decreases the formation of side products. The obtained compounds were screened for their binding affinity with multiple therapeutic targets of AD by molecular docking: beta-secretase (BACE), glycogen synthase kinase (GSK-3 beta) and acetylcholinesterase (AChE). The three compounds with highest affinity, 5 a (2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzaldehyde), 5 b (2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)benzaldehyde), and 5 d (2-(4-(4-(tert-butyl)phenyl)-1H-1,2,3-triazol-1-yl)benzaldehyde) were selected and evaluated on its antioxidant effect, in view of select the most promising one to perform the in vivo validation. Due the antioxidant potential ally to the affinity with BACE, GSK-3 beta and AChE, compound 5 b was evaluated in a mouse model of AD induced by intracerebroventricular injection of streptozotocin (STZ). Our results indicate that 5 b (1 mg/kg) treatment during 20 days is able to reverse the cognitive and memory impairment induced by STZ trough the modulation of AChE activity, amyloid cascade and GSK-3 beta expression.
更多
查看译文
关键词
thiourea,1,2,3-triazoles,multitarget,Alzheimer's disease,molecular docking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要