Simulations Of Events For The Lux-Zeplin (Lz) Dark Matter Experiment

Collaboration The LUX-ZEPLIN, :, Akerib D. S., Akerlof C. W., Alquahtani A.,Alsum S. K., Anderson T. J., Angelides N.,Araújo H. M., Armstrong J. E., Arthurs M.,Bai X., Balajthy J., Balashov S., Bang J., Bauer D., Baxter A., Bensinger J., Bernard E. P.,Bernstein A.,Bhatti A.,Biekert A.,Biesiadzinski T. P.,Birch H. J., Boast K. E.,Boxer B.,Brás P.,Buckley J. H., Bugaev V. V.,Burdin S., Busenitz J. K.,Cabrita R.,Carels C., Carlsmith D. L.,Carmona-Benitez M. C.,Cascella M.,Chan C., Chott N. I., Cole A., Cottle A., Cutter J. E.,Dahl C. E.,de Viveiros L., Dobson J. E. Y.,Druszkiewicz E., Edberg T. K., Eriksen S. R., Fan A., Fayer S., Fiorucci S.,Flaecher H., Fraser E. D., Fruth T.,Gaitskell R. J., Genovesi J.,Ghag C.,Gibson E.,Gilchriese M. G. D.,Gokhale S.,van der Grinten M. G. D.,Hall C. R., Harrison A., Haselschwardt S. J., Hertel S. A.,Hor J. Y-K.,Horn M., Huang D. Q., Ignarra C. M.,Jahangir O.,Ji W.,Johnson J., Kaboth A. C.,Kamaha A. C., Kamdin K.,Kazkaz K., Khaitan D., Khazov A., Khurana I.,Kocher C. D., Korley L., Korolkova E. V., Kras J.,Kraus H.,Kravitz S.,Kreczko L., Krikler B.,Kudryavtsev V. A.,Leason E. A.,Lee J., Leonard D. S.,Lesko K. T.,Levy C.,Li J.,Liao J.,Liao F. -T.,Lin J.,Lindote A., Linehan R.,Lippincott W. H.,Liu R.,Liu X., Loniewski C., Lopes M. I.,Paredes B. López,Lorenzon W., Luitz S., Lyle J. M., Majewski P. A., Manalaysay A.,Manenti L., Mannino R. L., Marangou N., Marzioni M. F.,McKinsey D. N.,McLaughlin J.,Meng Y., Miller E. H.,Mizrachi E.,Monte A.,Monzani M. E., Morad J. A., Morrison E., Mount B. J.,Murphy A. St. J., Naim D., Naylor A.,Nedlik C.,Nehrkorn C., Nelson H. N., Neves F.,Nikoleyczik J. A.,Nilima A.,Olcina I.,Oliver-Mallory K. C.,Pal S., Palladino K. J.,Palmer J.,Parveen N., Pease E. K., Penning B.,Pereira G.,Piepke A., Pushkin K., Reichenbacher J., Rhyne C. A., Richards A., Riffard Q., Rischbieter G. R. C., Rosero R., Rossiter P.,Rutherford G., Santone D.,Sazzad A. B. M. R.,Schnee R. W.,Schubnell M., Seymour D.,Shaw S., Shutt T. A.,Silk J. J.,Silva C.,Smith R., Solmaz M.,Solovov V. N., Sorensen P.,Stancu I.,Stevens A., Stifter K., Sumner T. J., Swanson N.,Szydagis M., Tan M., Taylor W. C., Taylor R., Temples D. J., Terman P. A.,Tiedt D. R.,Timalsina M., Tomás A., Tripathi M., Tronstad D. R.,Turner W.,Tvrznikova L.,Utku U., Vacheret A.,Vaitkus A.,Wang J. J.,Wang W.,Watson J. R., Webb R. C., White R. G., Whitis T. J.,Wolfs F. L. H.,Woodward D.,Xiang X.,Xu J.,Yeh M., Zarzhitsky P.

ASTROPARTICLE PHYSICS(2021)

引用 15|浏览43
暂无评分
摘要
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1-2)x10(-12) pb at a WIMP mass of 40 GeV/c(2). This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data. Crown Copyright (C) 2020 Published by Elsevier B.V. All rights reserved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要