Interactive Effects of Climatic Factors on Seasonal Vegetation Dynamics in the Central Loess Plateau, China

FORESTS(2019)

引用 11|浏览4
暂无评分
摘要
The interactive effects of climatic factors (precipitation and temperature) on vegetation growth can be characterized by their effect on vegetation seasonal dynamics. The interactive effects, seasonal trend of vegetation growth, and its future consistency (potential for future trend) have not been adequately studied in the literature. In this work, using the Enhanced Vegetation Index (EVI) and gridded climate data at a resolution of 250 m in the central Loess Plateau region, we examined seasonal vegetation dynamics with climate changes and the interactive effects of climatic factors on vegetation growth at the pixel and regional scales from the period 2000 to 2015. Vegetation cover in the Central Loess Plateau in China has dramatically changed due to the Grain-for-Green (GFG) ecological restoration program, which was designed to convert cropland to forestland or grassland since 1999. Our results show that the EVI increased significantly during the 16 year period and is likely to continue to increase in the near future. Relatively small Hurst exponents for forestland suggests that the potential for a future increased trend will be weak for the forest. Large Hurst exponents for grassland indicate its strong potential of further increase. Significant increases in spring precipitation have promoted vegetation growth, while significant decreases in summer temperature have had negative effects on vegetation growth. For temperatures between 10 to 20 degrees C, the impact of temperature on vegetation growth has a clear positive relationship with the moderator variable precipitation. For precipitation < 200 mm in the growing season, the impact of precipitation on vegetation growth has a clearly positive relationship with the moderator variable temperature. Results of this study will provide useful and important guidelines for designing forestland and grassland restoration plans in arid, semiarid and sub-humid regions.
更多
查看译文
关键词
vegetation dynamics,forest,climate changes,interactive effects,trend,precipitation,temperature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要