谷歌浏览器插件
订阅小程序
在清言上使用

Unprecedented mode of action of phenothiazines as ionophores unravelled by an NDH-2 bioelectrochemical assay platform.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2020)

引用 13|浏览13
暂无评分
摘要
Type II NADH:quinone oxidoreductase (NDH-2) plays a crucial role in the respiratory chains of many organisms. Its absence in mammalian cells makes NDH-2 an attractive new target for developing antimicrobials and antiprotozoal agents. We established a novel bioelectrochemical platform to characterize the catalytic behavior of NDH-2 from Caldalkalibacillus thermarum and Listeria monocytogenes strain EGD-e while bound to native-like lipid membranes. Catalysis of both NADH oxidation and lipophilic quinone reduction by membrane-bound NDH-2 followed the Michaelis-Menten model; however, the maximum turnover was only achieved when a high concentration of quinone (>3 mM) was present in the membrane, suggesting that quinone availability regulates NADH-coupled respiration activity. The quinone analogue 2-heptyl-4-hydroxyquinoline-N-oxide inhibited C. thermarum NDH-2 activity, and its potency is higher in a membrane environment compared to assays performed with water-soluble quinone analogues, demonstrating the importance of testing compounds under physiologically relevant conditions. Furthermore, when phenothiazines, one of the most commonly identified NDH-2 inhibitors, were tested, they did not inhibit membrane-bound NDH-2. Instead, our assay platform unexpectedly suggests a novel mode of phenothiazine action where chlorpromazine, a promising antitubercular agent and key medicine used to treat psychotic disorders, is able to disrupt pH gradients across bacterial membranes.
更多
查看译文
关键词
phenothiazines
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要