谷歌浏览器插件
订阅小程序
在清言上使用

Degradation of hexabromocyclododecane (HBCD) by nanoscale zero-valent aluminum (nZVAl).

Chemosphere(2019)

引用 27|浏览17
暂无评分
摘要
Hexabromocyclododecane (HBCD) has been listed in Annex A of the Stockholm Convention on Persistent Organic Pollutants (POPs) in 2013, but till now there is a lack of efficient methods for its degradation. In this study, nanoscale zero-valent aluminum (nZVAl), an excellent reductant with a very low redox potential of E0(Al3+/Al0) = -1.662 V and strong electron transfer ability, was used to reductively degrade HBCD. Nearly 100% HBCD was degraded within 8 h reaction at 25 °C in ethanol/water (v/v, 50/50) solution without pH adjustment. And about 67% cyclododecatriene (CDT) was obtained, which is the complete debromination product. What's more, the yield of Br- could achieve nearly 100% after optimizing conditions. The reaction was strongly promoted by increasing the dosages of nZVAl or decreasing the initial concentration of HBCD. The temperature had the most significant influence and the degradation was completed in 40 min with elevating the reaction temperature to 45 °C. The reaction mechanism was further revealed through the characterization of nZVAl particles before and after the reaction by SEM-EDS, TEM, HRTEM, XRD, and XPS. It was found that, after corrosion of the oxide film on the surface of nZVAl, metallic aluminum inside was exposed. The reactive sites were provided and electrons released were transferred from nZVAl to HBCD, causing HBCD degraded to dibromocyclododecadiene (DBCD) and then CDT by reductive debromination. These findings imply that nZVAl can degrade HBCD efficiently with no extra energy input and this offers a new idea for better treatment of HBCD.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要