Dissipation and Sorption Processes of Polycyclic Aromatic Hydrocarbons (pahs) to Organic Matter in Soils Amended by Exogenous Rich-Carbon Material

Journal of soils and sediments(2019)

Cited 32|Views8
No score
Abstract
Purpose The aim of the research was to assess the effect of biochar addition on aging, degradation, and sorption processes of polycyclic aromatic hydrocarbons (PAHs) to soil organic matter. The study was carried out as a sorption experiment in strictly controlled water and air conditions, which allowed for the accurate observation and prediction of PAH behavior in soils. Materials and methods Four soils were fortified with a PAH mixture (Fluorene-Flu, Anthracene-Ant, Phenanthrene-Phe, Pyrene-Pyr, Chrysene-Chry) at 20 mg kg −1 of single-compound concentration level. The experiment was carried out in two trials: soils + 5PAHs amended with biochar and soil + 5PAHs without biochar addition with incubation times of 0, 1, 3, 6, and 9 months. After each interval time, the extractable (E-SOM) and stable organic matter (S-SOM) were measured as well as PAHs determined in two forms: total concentration (PAH-tot) and residual concentration (PAH-rest) after E-SOM extraction. The PAH loss and half-life times were estimated according to pseudo first-order kinetics equation. Results and discussion The amounts of PAH-tot in the soils without biochar decreased by an average of 92%, while in soil with biochar, this was 41% after 9 months of aging. The amount of PAHs-rest bounded with S-SOM after 9 months of incubation varied from 0.9 to 3.5% and 0.2 to 1.3% of the initial PAH concentration, respectively, for soils non-induced and induced by biochar. In soils without biochar, Flu, Ant, Phe, and Pyr exhibited similar T 1/2 (43–59 days), but Chry was characterized by a much higher and broader T 1/2 than other hydrocarbons (67–280 days). Biochar addition to the soils significantly influenced the half-life changes for all PAHs. The highest changes were noted for Phe (14-fold increase), and the lowest was for Flu (7-fold increase). Conclusions The addition of exogenous-rich carbon material such as biochar to the soil significantly changes the behavior and sorption potential of PAHs in the soil. Soils enriched with biochar are characterized by a higher persistence of PAHs, longer aging time, and lower affinity for sorption by native organic matter structures. Soils freshly polluted by PAH are mainly sorbed by E-SOM, which significantly increases their accessibility and reduces formation of bound-residues in the soil.
More
Translated text
Key words
Biochar,Exogenous rich-carbon material,Organic contaminants,Soil organic matter,Soil sorbents,Sorption
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined