谷歌浏览器插件
订阅小程序
在清言上使用

Elastic Properties of Anatase Titanium Dioxide Nanotubes: A Molecular Dynamics Study

Chinese Physics B/Chinese physics B(2019)

引用 4|浏览8
暂无评分
摘要
The elastic properties of anatase nanotubes are investigated by molecular dynamics (MD) simulations. Youngʼs modulus, Poisson ratio, and shear modulus are calculated by transversely isotropic structure model. The calculated elastic constants of bulk rutile, anatase, and Youngʼs modulus of nanotube are in good agreement with experimental values, respectively, demonstrating that the Matsui and Akaogi (MA) potential function used in the simulation can accurately present the elastic properties of anatase titanium dioxide nanotubes. For single wall anatase titanium dioxide nanotube, the elastic moduli are shown to be sensitive to structural details such as the chirality and radius. For different chirality nanotubes with the same radius, the elastic constants are not proportional to the chiral angle. The elastic properties of the nanotubes with the chiral angle of 0° are worse than those of other chiral nanotubes. For nanotubes with the same chirality but different radii, the elastic constant, Youngʼs modulus, and shear modulus decrease as the radius increases. But there exist maximal values in a radius range of 10 nm–15 nm. Such information can not only provide a deep understanding of the influence of geometrical structure on nanotubes mechanical properties, but also present important guidance to optimize the composite behavior by using nanotubes as the addition.
更多
查看译文
关键词
molecular dynamics,elastic properties,TiO2 nanotube,chiral angle,radius
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要