谷歌浏览器插件
订阅小程序
在清言上使用

Assessing Salinity Leaching Efficiency in Three Soils by the HYDRUS-1D and -2D Simulations

Soil & tillage research(2019)

引用 42|浏览8
暂无评分
摘要
Salinity leaching is necessary to sustain agricultural production in irrigated croplands. Improving salinity leaching efficiency not only conserves water but also reduces groundwater contamination. Current leaching requirement (LR) calculations are based on steady-state and one-dimensional (1D) approaches, and consequently, this LR concept may not be applicable to drip irrigation (approximately 2D), which is becoming more common due to its higher water use efficiency. The aims of this study were to assess the salinity leaching fraction (LF) in clay, loam, and sand soils under 1D (to mimic sprinkler irrigation) and 2D (to mimic drip irrigation) transient conditions with a numerical model (HYDRUS). Water applications used the actual irrigation scheme in an almond orchard located in central California without considering precipitation. Model simulations showed that soil salinity at the lower boundary (depth of 150 cm) reached steady-state in 10 years in HYDRUS-1D simulations. The leaching fractions calculated from the ratio of drainage-water depth to irrigation-water depth (LFw = D-dw/D-tw,) and irrigation-water salinity to drainage-water salinity (LFEC = ECtw/ECdw) from HYDRUS-1D were similar among different textured soils. However, they were much higher under drip irrigation (2D) than under sprinkler irrigation (1D) when the same amount of water was applied, and LFEC values were much greater than the LFw values under 2D simulations. Salt balance (SB) and leaching efficiency (LE) indicated that sprinkler irrigation (1D) is more effective for salinity leaching than drip irrigation (2D). To improve salinity leaching efficiency, further evaluation of LRs under drip irrigation is needed.
更多
查看译文
关键词
Salinity,Leaching fraction,Root water uptake,HYDRUS-1D,HYDRUS-2D,Evapotranspiration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要