Quantifying the Nongeminate Recombination Dynamics in Nonfullerene Bulk Heterojunction Organic Solar Cells
Advanced energy materials(2019)
摘要
In this study, a comprehensive analytical model to quantify the total nongeminate recombination losses, originating from bimolecular as well as bulk and surface trap-assisted recombination mechanisms in nonfullerene-based bulk heterojunction organic solar cells is developed. This proposed model is successfully employed to obtain the different contributions to the recombination current of the investigated solar cells under different illumination intensities. Additionally, the model quantitatively describes the experimentally measured open-circuit voltage versus light intensity dependence. Most importantly, it is possible to calculate the experimental results with the same fitting parameter values from the presented model. The validity of this model is also proven by a combination of other independent, steady-state, and transient experimental techniques. This new powerful analytical tool will enable researchers in the photovoltaic community to take into account the synergetic contribution from all relevant types of nongeminate recombination losses in different optoelectronic systems and target their analysis of recombination dynamics at any operating voltage.
更多查看译文
关键词
impedance spectroscopy,nonfullerene acceptors,nongeminate recombination,organic bulk heterojunction solar cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要