基于声道特性的腭裂语音高鼻音等级自动识别
计算机工程与应用(2018)
Abstract
腭裂语音高鼻音等级的自动识别对于腭咽功能的评估具有重要临床价值。对腭裂语音高鼻音等级自动识别算法进行了研究,提出基于声道特性的腭裂语音高鼻音等级自动识别算法。利用高低阶线性预测倒谱系数(Linear Prediction Cepstrum Coefficient,LPCC)与倒谱系数结合成为LPCC-Cep特征组作为声学特征参数,采用稀疏表示分类器(Sparse Representation based Classification,SRC)实现腭裂语音四类高鼻音等级(正常、轻度、中度和重度)的自动识别。实验结果表明,提出的自动识别算法取得了较高的高鼻音类别正确识别率。其中,LPCC-Cep特征组参数对高鼻音等级的正确识别率为83.38%。
More求助PDF
上传PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Computer Engineering and Applications 2019
被引用2
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined