Characterization of genipin-crosslinked gelatin/hyaluronic acid-based hydrogel membranes and loaded with hinokitiol: In vitro evaluation of antibacterial activity and biocompatibility.

Materials science & engineering. C, Materials for biological applications(2019)

引用 39|浏览13
暂无评分
摘要
Hydrogel membranes are often used as physical barriers in oral tissue reconstruction and facial surgery to isolate connective and epithelial tissues and form a closed space for undisturbed bone healing. In this study, gelatin and hyaluronic acid were crosslinked with genipin and loaded with a hinokitiol additive as a bacteriostatic agent for potential applications as regeneration membranes. This bifunctional membrane had biocompatibility and antibacterial activities on each membrane side for proper biodegradation. Different membrane groups of gelatin/hyaluronic acid were obtained via a solution casting technique and were genipin crosslinked. The membrane groups were further loaded with adequate hinokitiol at a loading concentration of up to 0.16 g/L (hinokitiol to phosphate buffered saline). Fourier transform infrared spectroscopy showed that gelatin and hyaluronic acid were crosslinked with genipin through cross-linking amide bond (CONH) formation with a cross-linking degree of over 84%. The groups with hinokitiol showed substantial antibacterial activity. Meanwhile, the addition of hinokitiol on hydrogel membranes did not significantly affect the tensile strength. However, it decreased the solubility of the membranes by slowing down the relaxation and degradation of their molecular junctions as hinokitiol is a hydrophobic compound with low permeability. Consequently, the degradation of hydrogel membranes with hinokitiol was delayed. In vitro cytocompatibility indicated that the cell viability of the groups with hinokitiol increased with incubation time, demonstrating that cell viability and proliferation were not affected by cell culture testing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要