谷歌浏览器插件
订阅小程序
在清言上使用

NHEJ-Mediated Repair of CRISPR-Cas9-Induced DNA Breaks Efficiently Corrects Mutations in HSPCs from Patients with Fanconi Anemia.

Cell stem cell(2019)

引用 61|浏览31
暂无评分
摘要
Non-homologous end-joining (NHEJ) is the preferred mechanism used by hematopoietic stem cells (HSCs) to repair double-stranded DNA breaks and is particularly increased in cells deficient in the Fanconi anemia (FA) pathway. Here, we show feasible correction of compromised functional phenotypes in hematopoietic cells from multiple FA complementation groups, including FA-A, FA-C, FA-D1, and FA-D2. NHEJ-mediated repair of targeted CRISPR-Cas9-induced DNA breaks generated compensatory insertions and deletions that restore the coding frame of the mutated gene. NHEJ-mediated editing efficacy was initially verified in FA lymphoblastic cell lines and then in primary FA patient-derived CD34+ cells, which showed marked proliferative advantage and phenotypic correction both in vitro and after transplantation. Importantly, and in contrast to homologous directed repair, NHEJ efficiently targeted primitive human HSCs, indicating that NHEJ editing approaches may constitute a sound alternative for editing self-renewing human HSCs and consequently for treatment of FA and other monogenic diseases affecting the hematopoietic system.
更多
查看译文
关键词
Multiplex Genome Editing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要