谷歌浏览器插件
订阅小程序
在清言上使用

Analysis and Simulation of Process Damping in HPC Milling

Production engineering(2019)

引用 9|浏览0
暂无评分
摘要
The use of tools with chamfered cutting edges is an essential part of high performance cutting (HPC) as a rough milling process strategy for manufacturing structural components in the aerospace industry. Due to an interaction between the chamfer and the undulated workpiece surface, tool vibrations can be damped allowing high depths of cut without the occurrence of harmful dynamic effects. Hence, a significant increase in efficiency is possible. As a result of process damping, the stability boundary predicted by linear stability analysis provided for instance by analytical or geometric physically-based simulations will generally underestimate the experimentally determined one. Consequently, the object of this procedure, namely to reduce the number of test runs until sufficient process parameter values are determined, could not be met. Therefore, the damping effect induced by chamfered tools was analysed in this paper. It is shown that the use of chamfered cutting edges leads to a significant limitation of chatter amplitudes when exceeding the stability limit. The strength of this effect depends on the cutting speed and the engagement situation, which influence the intensity and number of interactions between the chamfer and the workpiece surface and, thus, the resulting process damping. Moreover, a dynamic process damping model presented in the literature was chosen and implemented in a geometric physically-based milling simulation. An evaluation of its validity points out the challenges regarding the simulation of process damping.
更多
查看译文
关键词
HPC milling,Process damping,Chamfered cutting edge,Stability prediction,Milling simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要