Hyperpolarized Water Enhances Two-Dimensional Proton Nmr Correlations: A New Approach For Molecular Interactions

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2019)

引用 19|浏览15
暂无评分
摘要
Protein and peptide interactions are characterized in the liquid state by multidimensional NMR spectroscopy experiments, which can take hours to record. We show that starting from hyperpolarized HDO, two-dimensional (2D) proton correlation maps of a peptide, either free in solution or interacting with liposomes, can be acquired in less than 60 s. In standard 2D NMR spectroscopy without hyperpolarization, the acquisition time required for similar spectral correlations is on the order of hours. This hyperpolarized experiment enables the identification of amino acids featuring solvent-interacting hydrogens and provides fast spectro-scopic analysis of peptide conformers. Sensitivity-enhanced 2D proton correlation spectroscopy is a useful and straightforward tool for biochemistry and structural biology, as it does not recur to nitrogen-15 or carbon-13 isotope enrichment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要