谷歌浏览器插件
订阅小程序
在清言上使用

HMGB1-mediated autophagy regulates sodium/iodide symporter protein degradation in thyroid cancer cells

Journal of Experimental & Clinical Cancer Research(2019)

引用 43|浏览7
暂无评分
摘要
Background Sodium/iodide symporter (NIS)-mediated iodide uptake plays an important physiological role in regulating thyroid gland function, as well as in diagnosing and treating Graves’ disease and thyroid cancer. High-mobility group box 1 (HMGB1), a highly conserved nuclear protein, is a positive regulator of autophagy conferring resistance to chemotherapy, radiotherapy and immunotherapy in cancer cells. Here the authors intended to identify the role of HMGB1 in Hank’s balanced salt solution (HBSS)-induced autophagy, explore NIS protein degradation through a autophagy-lysosome pathway in thyroid cancer cells and elucidate the possible molecular mechanisms. Methods Immunohistochemical staining and reverse transcription-polymerase chain reaction (RT-PCR) were performed for detecting the expression of HMGB1 in different tissues. HMGB1 was knocked down by lentiviral transfection in FTC-133/TPC-1 cells. Autophagic markers LC3-II, p62, Beclin1 and autophagosomal formation were employed for evaluating HMGB1-mediated autophagy in HBSS-treated cells by Western blot, immunofluorescence and electron microscopy. Western blot, quantitative RT-PCR and gamma counter analysis were performed for detecting NIS expression and iodide uptake in HMGB1-knockdown cells after different treatments. The reactive oxygen species (ROS) level, ROS-mediated LC3-II expression and HMGB1 cytosolic translocation were detected by fluorospectrophotometer, flow cytometry, Western blot and immunofluorescence. HMGB1-mediated AMPK, mTOR and p70S6K phosphorylation (p-AMPK, p-mTOR & p-p70S6K) were detected by Western blot. Furthermore, a nude murine model with transplanted tumor was employed for examining the effect of HMGB1-mediated autophagy on imaging and biodistribution of 99m TcO4 − . NIS, Beclin1, p-AMPK and p-mTOR were detected by immunohistochemical staining and Western blot in transplanted tumor samples. Results HMGB1 was a critical regulator of autophagy-mediated NIS degradation in HBSS-treated FTC-133/TPC-1 cells. And HMGB1 up-regulation was rather prevalent in thyroid cancer tissues and closely correlated with worse overall lymph node metastasis and clinical stage. HMGB1-knockdown dramatically suppressed autophagy, NIS degradation and boosted iodide uptake in HBSS-treated cells. Moreover, HBSS enhanced ROS-sustained autophagy and promoted the cytosolic translocation of HMGB1. A knockdown of HMGB1 suppressed LC3-II conversion and NIS degradation via an AMPK/mTOR-dependent signal pathway through a regulation of ROS generation, rather than ATP. Furthermore, these data were further supported by our in vivo experiment of xenografts formed by HMGB1 knockdown cells reverting the uptake of 99m TcO4 − as compared with control shRNA-transfected cells in hunger group. Conclusions Acting as a critical regulator of autophagy-mediated NIS degradation via ROS/AMPK/mTOR pathway, HMGB1is a potential intervention target of radioiodine therapy in thyroid cancer.
更多
查看译文
关键词
HMGB1, Autophagy, NIS, AMPK, mTOR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要