谷歌浏览器插件
订阅小程序
在清言上使用

Dose Reduction in Brain [ 18 F]FDG PET/MRI: Give It Half a Chance

Molecular imaging and biology(2019)

引用 6|浏览9
暂无评分
摘要
Integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) offers promising tools for evaluating brain disorders, including the minimization of exposure to ionizing radiation. Considering the length of scanning time with PET/MRI systems and their high sensitivity, we assumed that the activity could be reduced by one half compared with recommended activity for brain 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET exams without degrading image quality. We retrospectively simulated the reduction of injected activity (1 vs. 2 MBq/kg, [18F]FDG) in 100 patients assessed for cognitive impairment with simultaneous PET/MRI imaging. A list-mode acquisition was used to generate a 20-min image set as a reference (PETSTD) and to simulate a low-dose injection with a 10-min image (PETLD). We tested the reproducibility between PETLD and PETSTD with a blinded visual interpretation by two nuclear physicians asked to classify metabolic patterns, and a quantitative analysis conducted with regions-of-interest. Voxelwise comparisons between patients suggestive of Alzheimer’s disease (AD) and frontotemporal dementia (FTD) were also conducted. The intra-operator agreement was high between the PETSTD and PETLD visual assessments for both readers (kappa 0.92 and 0.99). SUV ratios were strongly reproducible (intraclass correlation coefficient 0.95). The voxelwise and regional comparisons between AD vs. FTD metabolic profiles yielded very similar results with PETSTD and PETLD. A reduction of the [18F]FDG dose down to 1 MBq/kg is possible when performing 20-min brain PET/MRI without modifying diagnostic performance and quantitative assessments. The advantage is a significant reduction in the patient effective dose, which is non-negligible in longitudinal follow-up studies and in research protocols involving healthy volunteers.
更多
查看译文
关键词
Dose reduction,Positron emission tomography,Magnetic resonance,Neurodegenerative disease,2-Deoxy-2-[18F]fluoro-D-glucose,SUV
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要