谷歌浏览器插件
订阅小程序
在清言上使用

Opposite Effects of Winter Day and Night Temperature Changes on Early Phenophases

Ecology(2019)

引用 24|浏览50
暂无评分
摘要
Changes in day (maximum temperature, T-MAX) and night temperature (minimum temperature, T-MIN) in the preseason (e.g., winter and spring) may have opposite effects on early phenophases (e.g., leafing and flowering) due to changing requirements of chilling accumulations (CAC) and heating accumulations (HAC), which could cause advance, delay or no change in early phenophases. However, their relative effects on phenology are largely unexplored, especially on the Tibetan Plateau. Here, observations were performed using a warming and cooling experiment in situ through reciprocal transplantation (2008-2010) on the Tibetan Plateau. We found that winter minimum temperature (T-MIN) warming significantly delayed mean early phenophases by 8.60 d/degrees C, but winter maximum temperature (T-MAX) warming advanced them by 12.06 d/degrees C across six common species. Thus, winter mean temperature warming resulted in a net advance of 3.46 d/degrees C in early phenophases. In contrast, winter T-MIN cooling, on average, significantly advanced early phenophases by 5.12 d/degrees C, but winter T-MAX cooling delayed them by 7.40 d/degrees C across six common species, resulting in a net delay of 2.28 d/degrees C for winter mean temperature cooling. The opposing effects of T-MAX and T-MIN warming on the early phenophases may be mainly caused by decreased CAC due to T-MIN warming (5.29 times greater than T-MAX) and increased HAC due to T-MAX warming (3.25 times greater than T-MIN), and similar processes apply to T-MAX and T-MIN cooling. Therefore, our study provides another insight into why some plant phenophases remain unchanged or delayed under climate change.
更多
查看译文
关键词
asymmetrical temperature change at day and night,flowering functional groups,plant phenology,temperature sensitivity,Tibetan Plateau,warming and cooling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要