谷歌浏览器插件
订阅小程序
在清言上使用

The effect of gold electrode thicknesses on electromechanical performance of Nafion-based Ionic Polymer Metal Composite actuators

Composites Part B: Engineering(2019)

引用 22|浏览19
暂无评分
摘要
The effect of gold electrode thickness (10, 27, 45, 67 and 80 nm) on the electromechanical performance of Nafion-based Ionic Polymer Metal Composite (IPMC) actuators was investigated in this study. The mechanical, morphological, electrical properties and electroactive behaviors of IPMC under direct current voltage (DC) and alternating voltage (AC) were examined. The tip displacement and maximum blocking force of actuators under various electrical stimulations were measured. In order to define transient response characteristics and quasi-steady state value of the actuators, DC excitations of 1, 3, 5, 7 and 9 V were used. Besides, to define bandwidth of the actuator samples, square wave excitation with magnitudes of 3, 5, and 7 V and frequencies of 0.1, 0.25, 0.5, 1, and 2 Hz were applied to actuator samples. The actuator having a gold electrode thickness of 45 nm produced maximum tip displacement among all actuators for all excitation DC voltages. In the square wave experiments, the higher cutoff frequencies were observed for the actuators with 27 and 45 nm electrode thicknesses. The blocking force of IPMC increased with increasing gold electrode thickness from 10 nm to 45 nm and decreased with increasing gold electrode thickness from 45 nm to 80 nm.
更多
查看译文
关键词
Ionic polymer metal composite,Actuator,Electroactive properties,Mechanical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要