谷歌浏览器插件
订阅小程序
在清言上使用

Supramolecular Β-Sheets Stabilized Protein Nanocarriers for Drug Delivery and Gene Transfection.

ACS Nano(2017)

引用 49|浏览8
暂无评分
摘要
Suckerin proteins, recently discovered in the sucker ring teeth of squids, represent a family of promising structural biomacromolecules that can form supramolecular networks stabilized by nanoconfined β-sheets. Exploiting this feature as well as their specific amino acid composition, we demonstrate that artificial suckerin-19 (S-19) can be engineered into nanocarriers for efficient drug delivery and gene transfection in vitro and in vivo. First, we demonstrate that S-19 self-assembles into β-sheet stabilized nanoparticles with controlled particle sizes of 100-200 nm that are able to encapsulate hydrophobic drugs for pH-dependent release in vitro, and that can effectively inhibit tumor growth in vivo. We also show that S-19 can complex and stabilize plasmid DNA, with the complexes stabilized by hydrophobic interactions of the β-sheet domains as opposed to electrostatic interactions commonly achieved with cationic polymers, thus lowering cytotoxicity. The elevated Histidine content of S-19 appears critical to trigger endosomal escape by the proton sponge effect, thereby ensuring efficient gene transfection both in vitro and in vivo. Our study demonstrates that S-19 represents a promising functional protein nanocarrier that could be used for various drug and gene delivery applications.
更多
查看译文
关键词
histidine-rich protein,nanomedicine,gene therapy,chemotherapy,protein nanoparticle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要