Calculating energy derivatives for quantum chemistry on a quantum computer

NPJ QUANTUM INFORMATION(2019)

引用 63|浏览7
暂无评分
摘要
Modeling chemical reactions and complicated molecular systems has been proposed as the “killer application” of a future quantum computer. Accurate calculations of derivatives of molecular eigenenergies are essential toward this end, allowing for geometry optimization, transition state searches, predictions of the response to an applied electric or magnetic field, and molecular dynamics simulations. In this work, we survey methods to calculate energy derivatives, and present two new methods: one based on quantum phase estimation, the other on a low-order response approximation. We calculate asymptotic error bounds and approximate computational scalings for the methods presented. Implementing these methods, we perform geometry optimization on an experimental quantum processor, estimating the equilibrium bond length of the dihydrogen molecule to within 0.014 Å of the full configuration interaction value. Within the same experiment, we estimate the polarizability of the H _2 molecule, finding agreement at the equilibrium bond length to within 0.06 a.u. ( 2 % relative error).
更多
查看译文
关键词
Quantum chemistry,Quantum information,Physics,general,Quantum Physics,Quantum Information Technology,Spintronics,Quantum Computing,Quantum Field Theories,String Theory,Classical and Quantum Gravitation,Relativity Theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要