谷歌浏览器插件
订阅小程序
在清言上使用

Order And Disorder In The Magnetization Of The Chiral Crystal Crnb3s6

arXiv: Materials Science(2019)

引用 20|浏览4
暂无评分
摘要
Competing magnetic anisotropies in chiral crystals with Dzyaloshinskii-Moriya exchange interactions can give rise to nontrivial chiral topological magnetization configurations with new and interesting properties. One such configuration is the magnetic soliton, where the moment continuously rotates about an axis. This magnetic system can be considered to be one dimensional and, because of this, it supports a macroscale coherent magnetization, giving rise to a tunable chiral soliton lattice (CSL) that is of potential use in a number of applications in nanomagnetism and spintronics. In this paper, we characterize the transitions between the forced-ferromagnetic (F-FM) phase and the CSL one in CrNb3S6 using differential phase contrast imaging in a scanning transmission electron microscope, conventional Fresnel imaging, ferromagnetic resonance spectroscopy, and mean-field modeling. We find that the formation and movement of dislocations mediate the formation of CSL and F-FM regions and that these strongly influence the highly hysteretic static and dynamic properties of the system. Sample size and morphology can be used to tailor the properties of the system and, with the application of magnetic field, to locate and stabilize normally unstable dislocations and modify their dimensions and magnetic configurations in ways beyond that predicted to occur in uniform films.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要