谷歌浏览器插件
订阅小程序
在清言上使用

A Model for the Global Quantum Efficiency for a TPB-based Wavelength-Shifting System Used with Photomultiplier Tubes in Liquid Argon in MicroBooNE

Journal of instrumentation(2018)

引用 1|浏览32
暂无评分
摘要
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (N_ PE) given the known systematic errors on the simulation parameters. We compare results from four measurements of the N_ PE determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of 0.0055±0.0009 for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.
更多
查看译文
关键词
Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc),Neutrino detectors,Photon detectors for UV,visible and IR photons (vacuum),Time projection chambers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要