谷歌浏览器插件
订阅小程序
在清言上使用

A Perspective on Solid-State Additive Manufacturing of Aluminum Matrix Composites Using MELD

Journal of materials engineering and performance(2018)

引用 60|浏览7
暂无评分
摘要
MELD, previously known as additive friction stir, is an emerging solid-state process that enables additive manufacturing of a broad range of metals and metal matrix composites. Here, we discuss its potential for fabricating aluminum matrix composites by showing examples of Al-SiC, Al 6061-Mo, and Al 6061-W composites. Thanks to its solid-state nature, MELD is uniquely suited for the use of high-strength aluminum alloys as matrix material, which would suffer from hot cracking problems in liquid-state processes. Using complementary characterization tools, we show that this process results in aluminum matrix composites with no observed porosity and homogeneous particle distribution. These properties stem from the extensive material flow and mixing during the deposition process. In addition to the high quality of produced composites, its ease of use, versatility of feed materials, and scalability all make MELD an attractive tool for additive manufacturing of aluminum matrix composites. We also discuss the limitations of MELD for composite fabrication, with issues related to maximum reinforcement loading, tool wear, and in-plane resolution. Finally, we compare the benefits and limitations of MELD with other composite fabrication processes such as powder bed fusion, friction stir processing, stir casting, and powder processing.
更多
查看译文
关键词
aluminum,additive manufacturing,composites,metallic matrix,thermomechanical processing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要