谷歌浏览器插件
订阅小程序
在清言上使用

Depth and Lineament Maps Derived from North Cameroon Gravity Data Computed by Artificial Neural Network

International journal of geophysics(2018)

引用 7|浏览2
暂无评分
摘要
Accurate interpretation of geological structures inverted from gravity data is highly dependent on the coverage of the recorded gravity data. In this work, Artificial Neural Networks (ANNs) are implemented using Levenberg-Marquardt algorithm (LMA) to construct a background density model for predicting gravity data across Northern Cameroon and its surroundings. This approach yields statistical predictions of gravity values (low values of errors) with 97.48%, 0.10, and 0.89, respectively, for correlation, Mean Bias Error, and Root Mean Square Error for two inputs (latitude, longitude) and 97.08%, 0.13, and 1.14 for three inputs (latitude, longitude, and elevation) for a set of anomalies as output. The model validation is obtained by comparing the results to other classical approaches and to the computed Bouguer, lineaments, and Euler maps obtained from measured gravity data. The depth of most of the deep faults and their orientation are in agreement with those obtained from other studies. The results achieved in this study establish the possibility of enhancing the quality of the analysis, interpretation, and modeling of gravity data collected on sparse grid of recording stations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要