谷歌浏览器插件
订阅小程序
在清言上使用

Experimental And Theoretical Electronic Structure And Symmetry Effects In Ultrathin Nbse2 Films

PHYSICAL REVIEW MATERIALS(2018)

引用 11|浏览16
暂无评分
摘要
Layered quasi-two-dimensional transition-metal dichalcogenides (TMDCs), which can be readily made in ultrathin films, offer excellent opportunities for studying how dimensionality affects electronic structure and physical properties. Among all TMDCs, NbSe2 is of special interest; bulk NbSe2 hosts a charge-density-wave phase at low temperatures and has the highest known superconducting transition temperature, and these properties can be substantially modified in the ultrathin film limit. Motivated by these effects, we report herein a study of few-layer NbSe2 films, with a well-defined single-domain orientation, epitaxially grown on GaAs. Angle-resolved photoemission spectroscopy was used to determine the electronic band structure and the Fermi surface as a function of layer thickness; first-principles band-structure calculations were performed for comparison. The results show interesting changes as the film thickness increases from a monolayer (ML) to several layers. The most notable changes occur between a ML and a bilayer, where the inversion symmetry in bulk NbSe2 is preserved in the bilayer but not in the ML. The results illustrate some basic dimensional effects and provide a basis for further exploring and understanding the properties of NbSe2.
更多
查看译文
关键词
theoretical electronic structure,electronic structure,symmetry effects
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要