谷歌浏览器插件
订阅小程序
在清言上使用

Evaluation and Application of the Optical Image Profiler (OIP) a Direct Push Probe for Photo-Logging UV-induced Fluorescence of Petroleum Hydrocarbons

Wesley McCall,Thomas M. Christy,Daniel A. Pipp, Ben Jaster, Jeff White,James Goodrich, John Fontana, Sheryl Doxtader

Environmental earth sciences(2018)

引用 15|浏览6
暂无评分
摘要
The presence of free phase petroleum fuels in the subsurface (often called light nonaqueous phase liquids/LNAPL) is a hazard in almost every town and city in the modern world. Leaking underground storage tanks and the resulting contamination and hazards have proven to be a challenge to investigate and remediate. One issue is adequately characterizing the presence and spatial extent of LNAPLs in the subsurface. Experience has shown that conventional soil coring methods and groundwater monitoring methods are fraught with limitations that can lead to significant errors in the estimation of the amount and spatial distribution of LNAPLs in the subsurface. This leads to the development of inaccurate conceptual site models and costly errors in remedial actions. A new direct push logging tool, the optical image profiler (OIP), has been developed to obtain high resolution site characterization data to more accurately define the presence and extent of LNAPLs in unconsolidated materials. The OIP system uses a downhole ultraviolet light-emitting diode to induce fluorescence of fuel LNAPL. A small complimentary metal–oxide–semiconductor camera mounted inside the probe behind a sapphire window captures photographic images of visible range fluorescence as the probe is advanced by direct push methods. In situ images of subsurface fuel fluorescence have not previously been available to the investigator and may further the understanding of LNAPL behavior. The OIP software also provides a log of percent area fluorescence (%AF) based on analysis of the images. An electrical conductivity (EC) dipole on the probe provides a log of bulk formation EC that is often a good indicator of formation lithology. The information presented here explains the basic design and operation of the OIP system in the field. Bench tests confirm the capability of the OIP system to detect a range of petroleum fuels. Field studies with the tandem EC and %AF logs are used to identify LNAPL and its migration pathways in the subsurface. These capabilities can improve the management and remediation of LNAPL-impacted sites and reduce long-term costs associated with cleanup and closure.
更多
查看译文
关键词
Optical image profiler (OIP),UV-induced fluorescence,Petroleum hydrocarbons,Direct push,Electrical conductivity(EC),Photo-logging,LIF,UVOST,LNAPL
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要