谷歌浏览器插件
订阅小程序
在清言上使用

Short Electron Bunches Generated by Perpendicularly Crossing Laser Pulses

Physics of plasmas(2017)

引用 6|浏览13
暂无评分
摘要
Optical injection of electrons into a laser wakefield accelerator by a low intensity orthogonally colliding laser pulse is investigated using 2D particle-in-cell simulations. The collision of the main laser pulse driving the plasma wave in the cavitated regime and the low intensity injection pulse affects the trajectories of electrons in the crossing region. As a consequence, some electrons are ejected into the front part of the bubble, and these electrons are subsequently trapped in the rear part of the bubble. The injected and accelerated electron bunch reaches a peak energy of 630 MeV after 8 ps of acceleration being as short as 7.0 fs and is quasimonoenergetic with a low energy spread of 20 MeV (3.8%), having a charge of several dozens of pC and a relatively large emittance of 2.27 π · mm · mrad. Two main injection mechanisms—crossing beatwave injection and injection by laser field preacceleration—were identified.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要