谷歌浏览器插件
订阅小程序
在清言上使用

Monitoring Photosynthetic Activity in Microalgal Cells by Raman Spectroscopy with Deuterium Oxide As a Tracking Probe

ChemBioChem(2017)

引用 10|浏览6
暂无评分
摘要
Microalgae offer great potential for the production of biofuel, but high photosynthetic activity is demanded for the practical realisation of microalgal biofuels. To this end, it is essential to evaluate the photosynthetic activity of single microalgal cells in a heterogeneous population. In this study, we present a method to monitor the photosynthetic activity of microalgae (in particular Euglena gracilis, a microalgal species of unicellular, photosynthetic, flagellate protists as our model organism) at single-cell resolution by Raman spectroscopy with deuterium from deuterium oxide (D2O) as a tracking probe. Specifically, we replaced H2O in culture media with D2O up to a concentration of 20% without disturbing the growth rate of E.gracilis cells and evaluated C-D bond formation as a consequence of photosynthetic reactions by Raman spectroscopy. We used the probe to monitor the kinetics of the C-D bond formation in E.gracilis cells by incubating them in D2O media under light irradiation. Furthermore, we demonstrated Raman microscopy imaging of each single E.gracilis cell to discriminate deuterated cells from normal cells. Our results hold great promise for Raman-based screening of E.gracilis and potentially other microalgae with high photosynthetic activity by using D2O as a tracking probe.
更多
查看译文
关键词
biological activity,deuterium,microalgae,photosynthesis,Raman spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要