谷歌浏览器插件
订阅小程序
在清言上使用

Evidence for an Evolutionarily Conserved Memory Coding Scheme in the Mammalian Hippocampus.

JOURNAL OF NEUROSCIENCE(2017)

引用 25|浏览28
暂无评分
摘要
Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e. g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i. e., virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus regionCA3and the dentate gyrus under both conditions. Surprisingly, weal so find evidence that the absolute number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories.
更多
查看译文
关键词
neural coding,neuroethology,primate,rodent,spatial cognition,virtual reality
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要