谷歌浏览器插件
订阅小程序
在清言上使用

Intrinsic Spin Dynamics in Optically Excited Nanoscale Magnetic Tunnel Junction Arrays Restored by Dielectric Coating

Applied physics letters(2016)

引用 6|浏览6
暂无评分
摘要
We report the all-optical observation of intrinsic spin dynamics and extraction of magnetic material parameters from arrays of sub-100 nm spin-transfer torque magnetic random access memory (STT-MRAM) devices with a CoFeB/MgO interface. To this end, the interference of surface acoustic waves with time-resolved magneto-optic signals via magneto-elastic coupling was suppressed using a dielectric coating. The efficacy of this method is demonstrated experimentally and via modeling on a nickel nanomagnet array. The magnetization dynamics for both coated nickel and STT-MRAM arrays shows a restored field-dependent Kittel mode from which the effective damping can be extracted. We observe an increased low-field damping due to extrinsic contributions from magnetic inhomogeneities and variations in the nanomagnet shape, while the intrinsic Gilbert damping remains unaffected by patterning. The data are in excellent agreement with a local resonance model and have direct implications for the design of STT-MRAM devices as well as other nanoscale spintronic technologies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要