Manifold Mixup: Better Representations by Interpolating Hidden States

INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97(2019)

引用 1|浏览4
暂无评分
摘要
Deep neural networks excel at learning the training data, but often provide incorrect and confident predictions when evaluated on slightly different test examples. This includes distribution shifts, outliers, and adversarial examples. To address these issues, we propose \manifoldmixup{}, a simple regularizer that encourages neural networks to predict less confidently on interpolations of hidden representations. \manifoldmixup{} leverages semantic interpolations as additional training signal, obtaining neural networks with smoother decision boundaries at multiple levels of representation. As a result, neural networks trained with \manifoldmixup{} learn class-representations with fewer directions of variance. We prove theory on why this flattening happens under ideal conditions, validate it on practical situations, and connect it to previous works on information theory and generalization. In spite of incurring no significant computation and being implemented in a few lines of code, \manifoldmixup{} improves strong baselines in supervised learning, robustness to single-step adversarial attacks, and test log-likelihood.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要