谷歌浏览器插件
订阅小程序
在清言上使用

pH-sensitive pullulan-doxorubicin nanoparticles loaded with 1,1,2-trichlorotrifluoroethane as a novel synergist for high intensity focused ultrasound mediated tumor ablation.

International Journal of Pharmaceutics(2019)

引用 23|浏览7
暂无评分
摘要
Nanoemulsions as synergists of high intensity focused ultrasound (HIFU) have been widely investigated, since they possess huge potential for improving the efficiency to ablate tumor. However, their clinical applications are limited due to the unsatisfactory phase-transition effect of nanoemulsions during the process of generating nanobubbles. Herein, a novel synergist for HIFU therapy was designed by encapsulating 1,1,2-trichlorotrifluoroethane (CFC) into pH-sensitive pullulan-doxorubicin (Pu-DOX/CFC) nanoparticles. These Pu-DOX/CFC nanoemulsions, with moderate vaporization temperature threshold of 47 °C, could provide favorable phase-transition effect, thus facilitating HIFU energy deposition. Meanwhile, Pu-DOX/CFC nanoemulsions could effectively deliver DOX/CFC to the tumor site and carry out combined therapy. The in vitro and in vivo results confirmed that Pu-DOX/CFC nanoemulsions notably enhanced both ablation and therapeutic efficiency comparing with other synergists. In conclusion, Pu-DOX/CFC nanoemulsions might serve as a novel synergist for HIFU therapy, and possess great potential in clinical implication.
更多
查看译文
关键词
High intensity focused ultrasound,Synergist,Nanoemulsion,pH-sensitive,Combined therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要