Modeling for detecting weld defects based on magneto-optical imaging.

APPLIED OPTICS(2018)

引用 7|浏览1
暂无评分
摘要
A magneto-optical (MO) imaging nondestructive testing (NDT) method for ferromagnetic weldments has been proposed. The mechanism of MO imaging was analyzed by the Faraday MO effect, magnetic domain theory, and magnetic hysteresis loops. Then, the relation between MO images and their corresponding excitation voltages was investigated. To explain the MO imaging system, magnetic domain distribution models of various welding states were established. These models are excited by two kinds of magnetic fields. One is the external magnetic field (H-ex), and the other is a weldment remanence field (M-r) after H-ex is removed. Relations of magnetic field excitation voltages, thickness of the spacer plate, and the corresponding MO images were also researched, which indicates the proposed NDT method can be used to detect incomplete penetration defect. Then, an experiment that uses MO imaging to detect the defects of high-strength steel (HSS) weldment was performed. Experimental results proved this method can detect crack, sag, and incomplete penetration of weldment effectively. Finally, a series of welded joint MO images of the HSS weldment were captured, which are used as the input data of the defect classification model established by using principal component analysis and an error backpropagation neural network, and the accuracy of this classification model can achieve 92.8%. (C) 2018 Optical Society of America
更多
查看译文
关键词
weld defects,imaging,magneto-optical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要