谷歌浏览器插件
订阅小程序
在清言上使用

Plasmon-Enhanced Photodynamic Cancer Therapy by Upconversion Nanoparticles Conjugated with Au Nanorods

ACS applied materials & interfaces(2016)

引用 86|浏览3
暂无评分
摘要
Photodynamic therapy (PDT) based on photosensitizers (PSs) constructed with nanomaterials has been widely applied to treat cancer. This therapy is characterized by an improved PS accumulation in tumor regions. However, challenges, such as short penetration depth of light and low extinction coefficient of PSs, limit PDT applications. In this study, a nanocomposite consisting of NaYF4:Yb/Er upconversion nanoparticles (UCPs) conjugated with gold nanorods (Au NRs) was developed to improve the therapeutic efficiency of PDT. Methylene blue (MB) was embedded in a silica shell for plasmon-enhanced PDT. UCPs served as a light converter from near-infrared (NIR) to visible light to excite MB to generate reactive oxygen species (ROS). Au NRs could effectively enhance upconversion efficiency and ROS content through a localized surface plasmon resonance (SPR) effect. Silica shell thickness was adjusted to investigate the optimized MB loading amount, ROS production capability, and efficient distance for plasmon-enhanced ROS production. The mechanism of plasmon-enhanced PDT was verified by enhancing UC luminescence intensity through the plasmonic field and by increasing the light-harvesting capability and absorption cross section of the system. This process improved the ROS generation by comparing the exchange of Au NRs to Au nanoparticles with different SPR bands. NIR-triggered nanocomposites of UCP@SiO2:MB-NRs were significantly confirmed by improving ROS generation and further Modifying folic acid (FA) to develop an active component targeting OECM-1 oral cancer cells. Consequently, UCP@SiO2:MB-NRs-FA could highly produce ROS and undergo efficient PDT in vitro and in vivo. The mechanism of PDT treatment by UCP@SiO2:MB-NRs-FA was evaluated via the cell apoptosis pathway. The proposed process is a promising strategy to enhance ROS production through plasmonic field enhancement and thus achieve high PDT therapeutic efficacy.
更多
查看译文
关键词
upconversion nanoparticle,gold nanorod,localized surface plasmon resonance,plasmonic enhancement,near-infrared light triggering,photodynamic therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要