谷歌浏览器插件
订阅小程序
在清言上使用

Oxidative Stress Index is Increased in Children Exposed to Industrial Discharges and is Inversely Correlated with Metabolite Excretion of Voc

Environmental and molecular mutagenesis(2018)

引用 8|浏览4
暂无评分
摘要
Although the Atoyac River has been classified as highly polluted by environmental authorities, several communities are settled on its banks, affecting around 1.5 million persons, as well as farmland, due to an environmental distribution of toxics in the area. Our aim was to demonstrate that this environment affects important physiological processes that have an impact in health, so we conducted a study of schoolchildren from small communities on the banks of the river and in another similar town located far from it. 91 and 93 students, boys and girls, were studied from each site for oxidative stress index (OSI), calculated from the total antioxidant capacity and the total oxidative status, BTEX metabolite excretion and relevant metabolic polymorphisms participating in the bioactivation‐detoxification of most VOC: CYP2E1 RsaI, NQO1 C609T, and null polymorphisms of GSTT1 and GSTM1. Results showed that OSI was significantly higher in children living by the river (5.23 ± 3.4 vs 2.59 ± 1.46, 95% C.I.). At this site, OSI was correlated with diminished metabolite excretion and a diminished antioxidant capacity; an association with genotypes CYP2E1RsaI (c2c2), GSTT1 present and NQO1*2 (CC) was also observed. Furthermore, boys at this site exhibited a diminished BMI compared to boys from the other community who were younger. In conclusion: children living at polluted sites like this, show early biological effects that might lead to health problems in their adult life. Environmental protection should be enforced to protect people's health in these sites where not even environmental monitoring is done. Environ. Mol. Mutagen. 59:639–652, 2018. © 2018 Wiley Periodicals, Inc.
更多
查看译文
关键词
oxidative stress index,polluted river,BTEX metabolites,metabolic polymorphisms,exposed children
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要