Multibuilding Block Janus Synthesized by Seed‐Mediated Self‐Assembly for Enhanced Photothermal Effects and Colored Brownian Motion in an Optical Trap
SMALL(2017)
摘要
The asymmetrical features and unique properties of multibuilding block Janus nanostructures (JNSs) provide superior functions for biomedical applications. However, their production process is very challenging. This problem has hampered the progress of JNS research and the exploration of their applications. In this study, an asymmetrical multibuilding block gold/iron oxide JNS has been generated to enhance photothermal effects and display colored Brownian motion in an optical trap. JNS is formed by seed-mediated self-assembly of nanoparticle-loaded thermocleavable micelles, where the hydrophobic backbones of the polymer are disrupted at high temperatures, resulting in secondary self-assembly and structural rearrangement. The JNS significantly enhances photothermal effects compared to their homogeneous counterpart after near-infrared (NIR) light irradiation. The asymmetrical distribution of gold and iron oxide within JNS also generates uneven thermophoretic force to display active colored Brownian rotational motion in a single-beam gradient optical trap. These properties indicate that the asymmetrical JNS could be employed as a strong photothermal therapy mediator and a fuel-free nanoscale Janus motor under NIR light.
更多查看译文
关键词
Nanofabrication,Nanoscale Optical Devices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要