Unidirectional Spin-Wave-Propagation-Induced Seebeck Voltage in a PEDOT:PSS/YIG Bilayer

PHYSICAL REVIEW LETTERS(2018)

引用 26|浏览20
暂无评分
摘要
We clarify the physical origin of the dc voltage generation in a bilayer of a conducting polymer film and a micrometer-thick magnetic insulator Y_{3}Fe_{5}O_{12} (YIG) film under ferromagnetic resonance and/or spin wave excitation conditions. The previous attributed mechanism, the inverse spin Hall effect in the polymer [Nat. Mater. 12, 622 (2013)NMAACR1476-112210.1038/nmat3634], is excluded by two control experiments. We find an in-plane temperature gradient in YIG which has the same angular dependence with the generated voltage. Both vanish when the YIG thickness is reduced to a few nanometers. Thus, we argue that the dc voltage is governed by the Seebeck effect in the polymer, where the temperature gradient is created by the nonreciprocal magnetostatic surface spin wave propagation in YIG.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要