谷歌浏览器插件
订阅小程序
在清言上使用

Projector Quantum Monte Carlo Method for Nonlinear Wave Functions.

PHYSICAL REVIEW LETTERS(2017)

引用 23|浏览14
暂无评分
摘要
We reformulate the projected imaginary-time evolution of the full configuration interaction quantum Monte Carlo method in terms of a Lagrangian minimization. This naturally leads to the admission of polynomial complex wave function parametrizations, circumventing the exponential scaling of the approach. While previously these functions have traditionally inhabited the domain of variational Monte Carlo approaches, we consider recent developments for the identification of deep-learning neural networks to optimize this Lagrangian, which can be written as a modification of the propagator for the wave function dynamics. We demonstrate this approach with a form of tensor network state, and use it to find solutions to the strongly correlated Hubbard model, as well as its application to a fully periodic ab initio graphene sheet. The number of variables which can be simultaneously optimized greatly exceeds alternative formulations of variational Monte Carlo methods, allowing for systematic improvability of the wave function flexibility towards exactness for a number of different forms, while blurring the line between traditional variational and projector quantum Monte Carlo approaches.
更多
查看译文
关键词
nonlinear wave,quantum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要