The RNA Editing Factor SlORRM4 Is Required for Normal Fruit Ripening in Tomato.

PLANT PHYSIOLOGY(2017)

Cited 67|Views19
No score
Abstract
RNA editing plays a key posttranscriptional role in gene expression. Existing studies on cytidine-to-uridine RNA editing in plants have focused on maize (Zea mays), rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana). However, the importance and regulation of RNA editing in several critical agronomic processes are not well understood, a notable example of which is fruit ripening. Here, we analyzed the expression profile of 33 RNA editing factors and identified 11 putative tomato (Solanum lycopersicum) fruit ripening-related factors. A rapid virus-induced gene silencing assay indicated that the organelle RNA recognition motif-containing protein SlORRM4 affected tomato fruit ripening. Knocking out SlORRM4 expression using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 genome editing strategy delayed tomato fruit ripening by lowering respiratory rate and ethylene production. Additionally, the expression of numerous genes associated with fruit ripening and mitochondrial functions changed significantly when SlORRM4 was knocked out. Moreover, the loss of SlORRM4 function significantly reduced RNA editing of many mitochondrial transcripts, leading to low-level expression of some core subunits that are critical for mitochondrial complex assembly (i.e. Nad3, Cytc1, and COX II). Taken together, these results indicate that SlORRM4 is involved in RNA editing of transcripts in ripening fruit that influence mitochondrial function and key aspects of fruit ripening.
More
Translated text
Key words
rna editing factor slorrm4,normal fruit,tomato
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined