Phase Angle Spatial Embedding (Phase)
MICCAI (3)(2018)
University of Illinois at Chicago | University of Pittsburgh | Seoul National University | University of California Santa Cruz | University of Wisconsin-Madison
Abstract
Modern resting-state functional magnetic resonance imaging (rs-fMRI) provides a wealth of information about the inherent functional connectivity of the human brain. However, understanding the role of negative correlations and the nonlinear topology of rs-fMRI remains a challenge. To address these challenges, we propose a novel graph embedding technique, phase angle spatial embedding (PhASE), to study the “intrinsic geometry” of the functional connectome. PhASE both incorporates negative correlations as well as reformulates the connectome modularity problem as a kernel two-sample test, using a kernel method that induces a maximum mean discrepancy (MMD) in a reproducing kernel Hilbert space (RKHS). By solving a graph partition that maximizes this MMD, PhASE identifies the most functionally distinct brain modules. As a test case, we analyzed a public rs-fMRI dataset to compare male and female connectomes using PhASE and minimum spanning tree inferential statistics. These results show statistically significant differences between male and female resting-state brain networks, demonstrating PhASE to be a robust tool for connectome analysis.
MoreTranslated text
Key words
Maximum Mean Discrepancy (MMD),Functional Connectome,Minimum Spanning Tree (MST),Reproducing Kernel Hilbert Space (RKHS),Connectome Analysis
求助PDF
上传PDF
PPT
Code
Data
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
2011
被引用59 | 浏览
2009
被引用12965 | 浏览
2014
被引用259 | 浏览
2017
被引用735 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest