Machine Learning Shows Association Between Genetic Variability in PPARG and Cerebral Connectivity in Preterm Infants.

Proceedings of the National Academy of Sciences of the United States of America(2017)

引用 33|浏览18
暂无评分
摘要
Significance Preterm birth affects 11% of births globally; 35% of infants develop long-term neurocognitive problems, and prematurity leads to the loss of 75 million disability adjusted life years per annum worldwide. Imaging studies have shown that these infants have extensive alterations in brain development, but little is known about the molecular or cellular mechanisms involved. This imaging genetics study found a strong association between abnormal cerebral connectivity and variability in the PPARG gene, implicating PPARG signaling in abnormal white-matter development in preterm infants and suggesting a tractable new target for therapeutic research. Preterm infants show abnormal structural and functional brain development, and have a high risk of long-term neurocognitive problems. The molecular and cellular mechanisms involved are poorly understood, but novel methods now make it possible to address them by examining the relationship between common genetic variability and brain endophenotype. We addressed the hypothesis that variability in the Peroxisome Proliferator Activated Receptor (PPAR) pathway would be related to brain development. We employed machine learning in an unsupervised, unbiased, combined analysis of whole-brain diffusion tractography together with genomewide, single-nucleotide polymorphism (SNP)-based genotypes from a cohort of 272 preterm infants, using Sparse Reduced Rank Regression (sRRR) and correcting for ethnicity and age at birth and imaging. Empirical selection frequencies for SNPs associated with cerebral connectivity ranged from 0.663 to zero, with multiple highly selected SNPs mapping to genes for PPARG (six SNPs), ITGA6 (four SNPs), and FXR1 (two SNPs). SNPs in PPARG were significantly overrepresented (ranked 7–11 and 67 of 556,000 SNPs; P < 2.2 × 10−7), and were mostly in introns or regulatory regions with predicted effects including protein coding and nonsense-mediated decay. Edge-centric graph-theoretic analysis showed that highly selected white-matter tracts were consistent across the group and important for information transfer (P < 2.2 × 10−17); they most often connected to the insula (P < 6 × 10−17). These results suggest that the inhibited brain development seen in humans exposed to the stress of a premature extrauterine environment is modulated by genetic factors, and that PPARG signaling has a previously unrecognized role in cerebral development.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要