谷歌浏览器插件
订阅小程序
在清言上使用

Biofilm Formation and Multidrug-Resistant Aeromonas Spp. from Wild Animals.

Journal of global antimicrobial resistance(2017)

引用 39|浏览16
暂无评分
摘要
OBJECTIVES:The 'One Health' concept recognises that the health of humans, animals and the environment are interconnected. Therefore, knowledge on the behaviour of micro-organisms from the most diverse environmental niches is important to prevent the emergence and dissemination of antimicrobial resistance. Wild animals are known to carry antimicrobial-resistant micro-organisms with potential public health impact. However, no data are available on the behaviour of sessile bacteria from wild animals, although antimicrobial resistance is amplified in biofilms. This study characterised the ciprofloxacin susceptibility and the adhesion and biofilm formation abilities of 14 distinct Aeromonas spp. (8 Aeromonas salmonicida, 3 Aeromonas eucrenophila, 2 Aeromonas bestiarum and 1 Aeromonas veronii) isolated from wild animals and already characterised as resistant to β-lactam antibiotics.METHODS:The ciprofloxacin MIC was determined according to CLSI guidelines. A biofilm formation assay was performed by a modified microtitre plate method. Bacterial surface hydrophobicity was assessed by sessile drop contact angle measurement.RESULTS:All Aeromonas spp. strains were resistant to ciprofloxacin (MICs of 6-60μg/mL) and had hydrophilic surfaces (range 2-37mJ/m2). These strains were able to adhere and form biofilms with distinct magnitudes. Biofilm exposure to 10×MIC of ciprofloxacin only caused low to moderate biofilm removal.CONCLUSIONS:This study shows that the strains tested are of potential public health concern and emphasises that wild animals are potential reservoirs of multidrug-resistant strains. In fact, Aeromonas spp. are consistently considered opportunistic pathogens. Moreover, bacterial ability to form biofilms increases antimicrobial resistance and the propensity to cause persistent infections.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要