Frame-wise Detection of Relocated I-frames in Double Compressed H.264 Videos Based on Convolutional Neural Network
Journal of Visual Communication and Image Representation(2017)CCF CSCI 3区
Abstract
Relocated I-frames are a key type of abnormal inter-coded frame in double compressed videos with shifted GOP structures. In this work, a frame-wise detection method of relocated I-frame is proposed based on convolutional neural network (CNN). The proposed detection framework contains a novel network architecture, which initializes with a preprocessing layer and is followed by a well-designed CNN. In the preprocessing layer, the high-frequency component extraction operation is applied to eliminate the influence of diverse video contents. To mitigate overfitting, several advanced structures, such as 1 x 1 convolutional filter and the global average-pooling layer, are carefully introduced in the design of the CNN architecture. Public available YUV sequences are collected to construct a dataset of double compressed videos with different coding parameters. According to the experiments, the proposed framework can achieve a more promising performance of relocated I-frame detection than a well-known CNN structure (AlexNet) and the method based on average prediction residual. (C) 2017 Elsevier Inc. All rights reserved.
MoreTranslated text
Key words
Double compression detection,Data-driven methodology,Convolutional neural network,Video forensics
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Double Compression Detection Based on Local Motion Vector Field Analysis in Static-Background Videos
2015
被引用37 | 浏览
2015
被引用25626 | 浏览
2016
被引用886 | 浏览
2016
被引用33 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest