Chrome Extension
WeChat Mini Program
Use on ChatGLM

Combining Nonclinical Experiments with Translational Pkpd Modeling to Differentiate Erlotinib and Gefitinib

Molecular cancer therapeutics(2016)SCI 2区

Hoffmann La Roche Ltd

Cited 15|Views12
Abstract
Abstract We quantitatively compare the efficacy of two approved EGFR tyrosine kinase inhibitors, erlotinib and gefitinib, based on in vivo and in vitro data and show how a modeling approach can be used to scale from animal to humans. Gefitinib shows a higher tumor uptake in cancer patients, and we explored the potential impact on pharmacologic and antitumor activity in in vitro and in xenograft mice. Tumor growth inhibition was monitored, and the pharmacokinetics (PK) in plasma and tumor, as well as temporal changes of phospho-Erk (pErk) signals were examined in patient-derived tumor xenograft mice. These data were integrated in a translational PKPD model, allowing us to project an efficacious human dose, which we retrospectively compared with prescribed doses for cancer patients. In vitro experiments showed that cell-cycle arrest was similar for erlotinib and gefitinib. Similar pERK biomarker responses were obtained despite a 6.6-fold higher total tumor exposure for gefitinib. The PKPD model revealed a 3.7-fold higher in vivo potency for gefitinib, which did not translate into a lower anticipated efficacious dose in humans. The model-based dose prediction matched the recommended clinical doses well. These results suggest that despite having lower total tumor-to-plasma ratios, active drug exposure at target site is higher for erlotinib. Considering the PK properties, this translates in a 50% lower recommended daily dose of erlotinib in cancer patients. In summary, total exposure at target site is not suitable to rank compounds, and an integrated modeling and experimental approach can assess efficacy more accurately. Mol Cancer Ther; 15(12); 3110–9. ©2016 AACR.
More
Translated text
Key words
EGFR Mutations,Tyrosine Kinase Inhibitors
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers

Phase I Oncology Drug Development

Phase I Oncology Drug Development 2020

被引用0

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest