谷歌浏览器插件
订阅小程序
在清言上使用

Investigation of turbulent fluid flows in stirred tanks using a non-intrusive particle tracking technique

Chemical Engineering Science(2016)

引用 34|浏览6
暂无评分
摘要
Fully turbulent fluid flows in a laboratory-scale stirred tank (ST) equipped with a radial flow impeller (Rushton turbine; RT) or an axial flow impeller (pitched blade turbine; PBT) were analyzed using the radioactive particle tracking (RPT) technique. The present study covered the Eulerian and Lagrangian descriptions of fluid motions. The RPT measurement of the turbulent flow field in a tank agitated by an RT was benchmarked with CFD simulations of RANS-based turbulence models and laser-based measurements. There was good agreement between all the methods for the measured and predicted 3D mean velocity profiles at all locations in the ST. The RPT technique was used to measure the turbulent flow field in a tank agitated by a PBT for the first time. The behavior of the wall jet was investigated. There was close agreement between our results and those of previous studies for both systems. Lagrangian mixing measurements showed that particle trajectories can be used to generate Poincaré maps, which in turn can be used as a tool to visualize the 3D flow structure inside mixing systems. Two mixing indices, one based on the concept of stochastic independence and the other on the statistical concept of memory loss in mixing processes, were used to measure mixing times using RPT results. The present study showed that the RPT technique holds great promise for investigating turbulent flows and the mixing characteristics of STs, and for assessing the adequacy of numerical models.
更多
查看译文
关键词
Mixing,Stirred tank,Radioactive particle tracking (RPT),CFD,Turbulent flow
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要