谷歌浏览器插件
订阅小程序
在清言上使用

Module of lithium divertor for KTM tokamak

Fusion Engineering and Design(2012)

引用 14|浏览30
暂无评分
摘要
Activity on projects of ITER and DEMO reactors has shown that solution of problems of divertor target plates and other plasma facing elements (PFEs) based on the solid plasma facing materials cause serious difficulties. Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life; to reduce power flux due to intensive re-irradiation on lithium atoms in plasma periphery that will essentially facilitate a problem of heat removal from PFE; to reduce Z(eff) of plasma to minimally possible level close to 1; to exclude tritium accumulation, that is provided with absence of dust products and an opportunity of the active control of the tritium contents in liquid lithium. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. The progress in development of lithium technology and also activity in lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, HT-7 and stellarator TJ II permits of solving the problems in development of steady-state operating lithium divertor module project for Kazakhstan tokamak KTM. At present the lithium divertor module for KTM tokamak is under development in the framework of ISTC project # K-1561. Initial heating up to 200 degrees C and lithium surface temperature stabilization during plasma interaction in the range of 350-550 degrees C will be provided by external system for thermal stabilization due to circulation of the Na-K heat transfer media. Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Development, creation and experimental research of lithium divertor model for KTM will allow to solve existing problems and to fulfill the basic approaches to designing of lithium divertor and in-vessel elements of new fusion reactor generation, to investigate plasma physics aspects of lithium influence, to develop technology of work with lithium in tokamak conditions. Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation. (C) 2012 Published by Elsevier B.V.
更多
查看译文
关键词
Lithium,Tokamak,Plasma facing material,Lithium limiter,Capillary-pore system
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要