Melatonin Modulates Endoplasmic Reticulum Stress and Akt/GSK3-Beta Signaling Pathway in a Rat Model of Renal Warm Ischemia Reperfusion

ANALYTICAL CELLULAR PATHOLOGY(2015)

Cited 39|Views5
No score
Abstract
Melatonin (Mel) is widely used to attenuate ischemia/reperfusion (I/R) injury in several organs. Nevertheless, the underlying mechanisms remain unclear. This study was conducted to explore the effect of Mel on endoplasmic reticulum (ER) stress, Akt and MAPK cascades after renal warm I/R. Eighteen Wistar rats were randomized into three groups: Sham, I/R, and Mel + I/R. The ischemia period was 60 min followed by 120 min of reperfusion. Mel (10 mg/kg) was administrated 30 min prior to ischemia. The creatinine clearance, MDA, LDH levels, and histopathological changes were evaluated. In addition, Western blot was performed to study ER stress and its downstream apoptosis as well as phosphorylation of Akt, GSK-3 beta, VDAC, ERK, and P38. Mel decreased cytolysis and lipid peroxidation and improved renal function and morphology compared to I/R group. Parallely, it significantly reduced the ER stress parameters including GRP 78, p-PERK, XBP 1, ATF 6, CHOP, and JNK. Simultaneously, p-Akt level was significantly enhanced and its targetmolecules GSK-3 beta and VDAC were inhibited. Furthermore, the ERK and P38 phosphorylation were evidently augmented after Mel administration in comparison to I/R group. In conclusion, Mel improves the recovery of renal function by decreasing ER stress and stimulating Akt pathway after renal I/R injury.
More
Translated text
Key words
renal warm ischemia reperfusion,melatonin,endoplasmic reticulum stress
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined