Pressure-induced superconductivity in the nonsymmorphic topological insulator KHgAs

NPG Asia Materials(2023)

引用 3|浏览7
暂无评分
摘要
Recently, topological insulators (TIs) KHgX (X = As, Sb, Bi) with hourglass-shaped dispersion have attracted great interest. Different from the TIs protected by either time-reversal or mirror crystal symmorphic symmetry tested in previous experiments, these materials were proposed as the first material class whose band topology relies on nonsymmorphic symmetries. As a result, KHgX shows many exotic properties, such as hourglass-shaped electronic channels and three-dimensional doubled quantum spin Hall effects. To date, high-pressure experimental studies on these nonsymmorphic TIs are minimal. Here, we carried out high-pressure electrical measurements up to 55 GPa, together with high-pressure X-ray diffraction measurements and high-pressure structure prediction on KHgAs. We found a pressure-induced semiconductor-metal transition between ~16 and 20 GPa, followed by the appearance of superconductivity with a T c of ~3.5 K at approximately 21 GPa. The superconducting transition temperature was enhanced to a maximum of ~6.6 K at 31.8 GPa and then slowly decreased until 55 GPa. Furthermore, three high-pressure phases within 55 GPa were observed, and their crystal structures were established. Our results showed the high-pressure phase diagram of KHgAs and determined the pressure-induced superconductivity in nonsymmorphic TIs. Thus, our study can be used to facilitate further research on superconductivity and topologically nontrivial features protected by nonsymmorphic symmetries.
更多
查看译文
关键词
Phase transitions and critical phenomena,Superconducting properties and materials,Topological insulators,Materials Science,general,Biomaterials,Optical and Electronic Materials,Structural Materials,Energy Systems,Surface and Interface Science,Thin Films
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要