谷歌浏览器插件
订阅小程序
在清言上使用

Do Cochlear Mechanisms Explain the Noise-Disruption of the Auditory Brainstem Response to Speech?

˜The œJournal of the Acoustical Society of America/˜The œjournal of the Acoustical Society of America(2013)

引用 1|浏览3
暂无评分
摘要
In background noise, the timing precision of the auditory brainstem response to speech (speech-ABR) is disrupted and the response latency increases. The severity of the disruption has been correlated with listeners’ ability to understand speech-in-noise. To date, although a central mechanism is assumed, the locus of the speech-ABR timing disruption is not clear. The present study aimed to investigate the contribution of different cochlear mechanisms to noise-induced latency increases. A first experiment examined the “cochlear place” mechanism, by which the latency of the response increases as cochlear origin moves towards lower frequency regions. The results showed that the speech-ABR reflects an average over responses from a broad range of cochlear regions, which respond with substantial relative delays. This implies that cochlear place can potentially have large effects on masked speech-ABR latency. Another mechanism that is known to be involved in noise-induced ABR latency increases is neural adaptation. This is presumed to occur at the inner hair cell-nerve junction and is thought to reflect cochlear masking. Thus, if this mechanism contributes to speech-ABR latency increases in noise, we would expect this contribution to depend on cochlear frequency selectivity and amplification gain. This hypothesis is tested in the second experiment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要