谷歌浏览器插件
订阅小程序
在清言上使用

Structural Changes of the Active Center During the Photoactivation of Xenopus (6-4) Photolyase

Biochemistry(2016)

引用 8|浏览20
暂无评分
摘要
Photolyases (PHRs) repair the UV-induced photoproducts, cyclobutane pyrimidine dimer (CPD) or pyrimidine-pyrimidone (6-4) photoproduct [(6-4) PP], restoring normal bases to maintain genetic integrity. CPD and (6-4) PP are repaired by substrate-specific PHRs, CPD PHR and (6-4) PHR, respectively. Flavin adenine dinucleotide (FAD) is the chromophore of both PHRs, and the resting oxidized form (FAD(ox)), at least under in vitro purified conditions, is first photoconverted to the neutral semiquinoid radical (FADH(•)) form, followed by photoconversion into the enzymatically active fully reduced (FADH(-)) form. Previously, we reported light-induced difference Fourier transform infrared (FTIR) spectra corresponding to the photoactivation process of Xenopus (6-4) PHR. Spectral differences between the absence and presence of (6-4) PP were observed in the photoactivation process. To identify the FTIR signals where these differences appeared, we compared the FTIR spectra of photoactivation (i) in the presence and absence of (6-4) PP, (ii) of (13)C labeling, (15)N labeling, and [(14)N]His/(15)N labeling, and (iii) of H354A and H358A mutants. We successfully assigned the vibrational bands for (6-4) PP, the α-helix and neutral His residue(s). In particular, we assigned three bands to the C ═ O groups of (6-4) PP in the three different redox states of FAD. Furthermore, the changed hydrogen bonding environments of C ═ O groups of (6-4) PP suggested restructuring of the binding pocket of the DNA lesion in the process of photoactivation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要